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By G. T. CSANADY 
University of Waterloo, Waterloo, Ontario 

(Received 13 January 1966) 

Experimental evidence suggests that it may be profitable to separate the dis- 
cussion of the high-frequency components of jet noise from low-frequency 
components. Theory then leads one to  the recognition that the physical 
mechanism of noise generation is slightly different for the two components and 
for this reason one may speak of high-frequency ‘self noise ’ and low-frequency 
‘shear noise’ (Lilley 1958; Ribner 1964). 

Both theory and experiment indicate that mean-flow refraction effects on 
self noise are appreciable. Using geometrical acoustics a description of the far- 
field radiation pattern of the high-frequency end of the jet-noise spectrum is 
obtained, in good qualitative agreement with observations. A conservation law 
of acoustic energy, applying between the frame of reference in which the sound 
sources move, and the fixed frame in which the observations are carried out, 
results in the absence of the convection amplification effect (over and above the 
U8 law) for total sound power at  high frequencies, a lsesult which helps explain 
the uniform validity of the Us law. 

An analysis of the shear-noise source term suggests that this part of the sound 
radiation is due to a combination of quadrupoles which have at least one axis 
parallel to the jet. This then explains the observed concentration of low- 
frequency noise around the jet axis. 

1. Introduction 
In  the light of detailed knowledge accumulated within the last decade or so on 

the characteristics of the aerodynamic noise of jets, it  would appear to be useful 
to distinguish between two rather different components of jet noise, character- 
ized in the first instance by different, though overlapping, ranges of frequency. 

The two components have a different directivity pattern, the low-frequency 
noise being concentrated around the jet axis, while the high-frequency noise is 
more nearly omni-directional, and it seems that the physical mechanism of their 
generation is also somewhat different. Noise suppressors (the simplest ones being 
serrations or teeth on a nozzle) reduce the intensity of the low-frequency compo- 
nent but are largely ineffective on the high-frequency noise. 

Lilley (1958) has used the classification ‘self noise ’ and ‘shear noise ’ for the 
higher- and lower-frequency components respectively. The terminology arises 
from one of Lighthill’s (1954) results to the effect that a portion of the noise is 
directly generated by turbulence (much as would be generated by isotropic 
turbulence, discussed by Proudman 1953) while another portion is proportional 
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to the mean-flow velocity gradient, the mean ‘shear ’. Mollo-Christensen, Kolpin 
& Martucelli ( 1964) have experimentally demonstrated the different character - 
istics of the two components of jet noise in a forceful manner. Ribner (1964) has 
discussed jet noise in some detail on the basis of this classification and has been 
able to provide a fairly comprehensive and illuminating picture. 

Both in Ribner’s (1964) review article and Lighthill’s (1963) somewhat earlier 
summary, certain shortcomings of our present understanding of jet noise are 
conspicuous. Little is known of the effect of mean-flow refraction, although from 
atmospheric applications it is known that the variation of wind with height can 
bend sound rays and lead to the formation of ‘zones of silence ’. For sound of very 
long wavelength such effects may be expected to be negligible (as has indeed been 
assumed by Lighthill), but some recent experiments of Atvars, Schubert & Ribner 
(1965) show beyond doubt that this assumption cannot be made for all com- 
ponents of jet noise, even if it is approximately valid a t  lower frequencies. 

A second difficulty concerns the exact physical mechanism of shear-noise 
emission. Lighthill’s (1954) original proposal was than an xy (45”) quadrupole is 
responsible for this noise, but experiments indicate an xx (0’) quadrupole, as 
suggested by Ribner (1964), or a t  least a combination of quadrupoles with one 
axis along x. Although Ribner has been able to provide theoretical expressions of 
the correct form to account for shear noise, his calculations are based on an 
arbitrarily assumed velocity correlation function and a more general discussion 
of the relevant source terms would seem to be desirable. The understanding 
of the generation of shear noise is of particular importance since it may shed 
light on the operation of noise suppressors, which, as remarked before, mainly 
eliminate low-frequency noise. 

The present paper is thus devoted to a discussion of the twin problems of the 
refraction of ‘self noise’ by the mean flow and the generation of ‘shear noise’ 

2. The ‘convected’ wave equation 
In  his classic paper on aerodynamic sound generation Lighthill (1952) demon- 

strated that the equations of continuity and motion may be cast into the form of 
a wave equation 

where qj = pvtvj + p i j  - aipSij. 
Herein p is density, t time, a, speed of sound in the undisturbed medium, xi are 

space co-ordinates, vi velocity components and pi j  the stress tensor. The left- 
hand side of this equation describes the propagation of sound in a medium at rest, 
while the right-hand side may be regarded a collection of all-comprehensive 
‘source terms ), significantly different from zero only in fast-moving regions of 
the flow and describing a number of different physical effects such as generation, 
refraction and scattering of sound. Our objective here is to discuss those physical 
effects which are attributable specifically to the strongly non-uniform mean- 
velocity field of a jet, and to this end we shall attempt to identify the relevant 
parts of the source terms. 
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Using the equation of continuity the leading term in the double divergence of 
T,. (the momentum flux term) may be expanded, giving the following form of the 
source terms : 

In the conventional manner of turbulence theory let the velocity-field be now 
divided into a ‘mean’ and a ‘fluctuating’ part: 

vi = Q+v;. 

The above expression then becomes 

A number of terms in this expression do not depend on the turbulent velocities, 
only on the mean flow, and contain at the same time, density derivatives. Such 
terms thus express the interaction of sound waves with the mean velocity field; 
they are more likely to have relevance to the propagation of sound than to its 
generation. For this reason the non-turbulent terms in X may be conveniently 
taken over to the left-hand side of (1) : 

where the new ‘source term’ is given by 

The main difference between ( 1 )  and (4) is that differentiation following the 
mean motion, (atat + Q a/axL), replaces ajat. This evidently describes the convection 
of sound by the mean flow. The last term on the left of (4), containing the density, 
may be shown to be of a smaller order of magnitude in jets than the remainder by 
a boundary-layer-type argument, and we shall not be concerned with it here. 
Without this term the equation is identical with that describing the propagation 
of sound in a uniformly moving medium (Blokhintsev 1946). 

An important point, however, is that mean velocity gradients appear in the 
source term ( 5 ) .  We shall return to these terms after having discussed convection 
effects. 

The principal physical effects of sound convection are visualized with relative 
ease for the two extreme cases of very short or very long wavelength of the 
radiated sound (short or long compared with the thickness of the shear layer). 
Sound of very short wavelength is known to suffer bending of the rays or ‘refrac- 
tion’, as in the atmosphere where the wind velocity increases with height. This 
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leads to the formation of ‘zones of silence’ discussed by Lord Rayleigh. The 
behaviour of such short-wavelength sound may be described by ray theory or 
geometrical acoustics. 

On the other hand, when the wavelength of the radiated soundis long compared 
with the thickness of the shear layers any density excess or deficiency appearing 
a t  the source-eddy extends in the same phase to a relatively large portion of the 
fluid, much of it completely outside the jet. The fact that the shape of this region 
of more or less coherent initial density disturbance is distorted by the mean flow 
is not likely to be significant : the undisturbed fluid just outside the jet receives 
the ‘signature’ of the eddy’s pulsations exactly as they occur a t  the source. In  
this case it seems to be legitimate to ignore the convection effects as such and 
replace the source-eddy by a source moving through a medium at rest, as has 
been done by Lighthill (1952). 

Experimental evidence shows that jets radiate sound of a reasonably broad 
frequency spectrum. At the peak of the spectrum the frequency is such that the 
long-wavelength approximation appears reasonable. Consequently, the moving- 
source model may be used in deducing the directivity distribution for most of the 
radiated sound. However, there are also high-frequency components in the 
observed noise experimentally easily separated from the rest. In  understanding 
the behaviour of these components a discussion of the short-wavelength approxi- 
mation may be useful, which is therefore the subject of the next section. 

3. Geometrical acoustics of an ‘idealized’ mixing layer 
It is now known that most of the noise of jets originates in the centre portion of 

the mixing layer, close to the nozzle exit. Here the flow is very nearly parallel and 
the radial velocity gradient dominant. In order to simplify the theory we shall 
deal with an ‘idealized mixing layer ’ characterized by 

1 v, = u = f ( X 2 ) ,  v, = v, = 0, 
aqlax, = aqlax, = 0. 

These assumptions retain the most essential features of the velocity field while 
reducing the number of terms in (4) to a level where the theoretical arguments are 
easily appreciated. It will also be convenient in this section to adopt an (x, y, z )  
notation. For the idealized mixing layer defined by (6), equation (4) becomes then 

This ‘convected wave equation’ is very similar to the equation describing the 
propagation of sound in a homogeneous moving medium of uniform velocity U ,  
the difference being that in our ‘idealized mixing layer’ the velocity U is a 
function of the y co-ordinate. 

The principles of geometrical acoustics have been set forth in the exhaustive 
study of Blokhintsev (1946), for example. The geometry of the sound rays may 
be obtained by a study of the characteristics of equation (7).  For the case of our 
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idealized mixing layer, U = U ( y ) ,  if cis the angle included by a sound ray and the 
x-axis, the progress of a single ray is described by the simple relationship 

cos </( 1 + M cos 6) = cos c, = const., (8) 

where M = U / a  is the local Mach number and co is the angle of emergence of the 
ray into the undisturbed fluid where M = 0. For our purposes here it is permissible 
to neglect temperature differences, so that a = a, throughout. 

For forward emission the minimum of 6 at the source is 0, giving cos c = 1. 
This corresponds to a minimum angle of emergence 

corn = cos-1(1+ NJ-1 (8 a )  

if M, is the source Mach number. Conversely, for rearward emission the maximum 
angle of emergence is c, = n- and the corresponding maximum angle of emission 
for waves that do escape through the mixing layer is 

5, = cos-1( - 1 - M)-1. (8 b)  

Consequently, rays emitted directly downstream are deflected and emerge into 
the undisturbed medium at an angle corn, so that a cone of half angle Q, down- 
stream of the source is not reached by any sound rays at  all, it  becomes a ‘cone 
of silence’. Upstream of the source all space is reached by waves, but much of the 
emission is trapped inside the mixing layers and, in the case of propulsion jets, 
disappears into the engine. 

The sharp division at  the boundary of the forward cone of half angle corn cannot 
of course exist in reality, not even on the linear theory. As Friedlander (1958) 
points out, the geometrical-acoustics approximation may be regarded as the 
first term in a series expansion either in terms of inverse powers of the wave- 
number (as Blokhintsev has approached the problem) or, for a sound pulse, of 
time counted from the arrival of the pulse. Thus there will be a considerable 
‘leakage’ by diffraction into the cone of silence. Nevertheless, a sharp peak is 
to be expected at the angle given by equation (8 a) .  

The intensity of the sound may be calculated from the energy-flux conserva- 
tion law (Blokhintsev 1946, p. 41) 

(?/pa2) (1 + M cos 6) V,dS = const. (along a ray-tube), (9) 

where p is acoustic pressure fluctuation (not absolute pressure), ;.” being its 
mean-square value over a sufficiently long period. V ,  is the magnitude of the 
‘ray velocity’, V,= U f a n ,  

with n = a vector normal to the wave-front; dX is the cross-section of a given 
individual ‘ray tube’. The projection of the ray velocity to n is the ‘phase 
velocity’ 5. With the section dX, of the ray tube traced out on the wave-front one 
has the relationship (figure 1) 

(10) 

Kas = pis,. (11) 

In order to predict the far field of sound radiation by equation (9) it is necessary 
to know $ somewhere along the ray tubes. What one is looking for is a relation- 
ship between source strength Q and?. 
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A calculation of $close to the source is possible in a frame of reference attached 
to the moving source. There are actually two reasons for the use of a moving 
frame of reference: one, that retarded time effects may in such a frame be 
expressed with relative ease; two, that one needs a simpler equation than (7)  for 
writing down an explicit solution. In  order to carry out the transformation it is 
necessary to assume that both the source-eddy size and the wavelength of the 
radiated sound are small compared with the thickness of the shear layer. In that 
case the source element and the first few wavelengths of the radiated sound may 
be regarded as embedded in fluid travelling at sensibly constant mean velocity 
U = M,a. Applying the transformation 

t‘ = t, x’ = x-Ut, y’ = y, x r  = 2 (12) 

to equation (7)  one obtains 
(a2p/atr2) - a; V’zp = Q‘, 

where V’2 is the Laplacian, Q’ the source term (equation (5)) in moving co- 
ordinates. It may be remarked here that to assume a source volume to be small 
compared with the shear-layer thickness is a relatively crude step. It is, however, 
also made in the moving-source model and there is no reason to doubt its 
usefulness. 

Equation (13) is now the ordinary wave equation and the solution may be 
written down at once. Let a source element of strength &’ be located at a point 
of radius vector s’ in the moving frame. The sound pressure at another point, of 
radius vector r’, is given by 

where dr’ = dx’dy’dx’ is the volume element at the source point and the square 
brackets indicate that Q‘ is to be evaluated at  the retarded time, t - ( lr‘- s‘l/a). 
This solution is valid in the ‘far field’, i.e. provided that 1r’- s’I is greater than 
a wavelength or so. Since we are dealing with the short-wavelength approxima- 
tion, (14) is appropriate. Integrating over a whole ‘eddy volume’ or ‘correlation 
volume’ the mean-square sound pressure a t  radius vector r‘ may be found 

where the ‘ correlation volume ’ L3 is defined by the equation 

&r2L3 = //Irn Q’(s)Q’(s*)dr*  
--m 

The square brackets have now been dropped on the understanding that 
retarded time effects over an eddy volume are negligible. When the source term 
Q is a single or double space derivative, the effect of retarded time is to produce 
the characteristic pattern of dipole or quadrupole radiation and replace the space 
by a time derivative, as discussed in detail by Lighthill (1952). Recent experi- 
mental evidence (see e.g. Wills 1964) has indicated that eddy convection velo- 
cities are not quite identical with mean velocities. Since our moving frame moves 
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with the local mean velocity, significant differences between this and the eddy 
convection velocity would necessitate taking into account retarded time in a more 
complicated way. However, in the centre of the mixing layer where most of the 
noise sources are located the differences are small and do not warrant further 
consideration. 

The task of calculating 2 close to the source is now accomplished, except for 
a return to the fixed frame of reference. A point on the ‘ ray-tube ’ is fixed in space, 
while the source elements d ~ ’  move at a velocity M,a. As discussed by Lighthill 
(1952) in some detail, an apparent length-contraction takes place due to retarded 
times 

(17) d7‘ = dr/(1+Msc0s5). 

Vr (ray 
velocity) 

dSf (section on wave front) 

dS (Normal cross-section) 

FIGURE 1. Propagation of sound in a moving medium. 

The source term Q’ we intend to leave in a form to be evaluated in a moving 
frame. The distance Ir’ - s’I would be inconvenient; we replace it by 

dSf = lr’-s’lzdQ, 

where dQ is the solid angle of a ray-tube and dSf is the cross-section element along 
a wave-front, as indicated in figure 1. The ray-tube spoken of here is, of course, 
the one connecting s‘ and r’ in the moving frame. Equation (15) thus transforms 
into ~ 

L3 dr. 
Q’zdQ @as - 

- 167f2(1 +M,cos<) 

For this particular ray-tube we may now determine the constant in (9). Making 
use of (11) and noting that V ,  = a(1 +M,cos 6) (see figure 1) one finds 

The notation ‘ 8 2 ,  is necessary because this is the intensity radiated by an 
elemental eddy volume, and is proportional to volume. If mean density differ- 
ences are negligible, we may set here a = a, = a,, p = ps = p,; p,, a, being mean 
density and speed of sound at the source-volume. 
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A rectangular element dS, on the wave-front is described by dS2 = dgdc. As 
the ray leaves the high-velocity regions d$ remains unaffected but dc changes in 
a manner that can be deduced from (8). A t  a sufficiently large distance from the 
source region it is a permissible approximation for practical purposes to write 
for the cross-section of a ray-tube originating from a region of Mach number M, 
(see figure 2 )  

dX = R2 d$ dc,. 

Nozzle 

FIGURE 2. Ray tube in the far field. 

Thus the intensity of sound in the far field ((far’ in the sense that (20) is valid) 
may be expressed from (19) as 

where c is the angle given by (8) with M = M,. 
The last equation describes the directivity pattern of high-frequency radiation 

emitted by a single ‘eddy volume’. The quadrupole nature of the radiation- 
with its characteristic directivity pattern-is hidden in the source function &-. 
Consider, for example, the x--x quadrupole 

Tll = pu”. (22) 

The sound intensity field of this particular quadrupole in the moving pame is 
proportional to C O S ~  6: 

1 P(pu’2) 
123) 

Here the usual conversion of a space into a time derivative has been carried out 
(Lighthill 1952). Par from the source, by equation (21), this yields 
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where the 'directivity factor'f(6) is given by 

By equation (8) the directivity factor may be expressed as a function of the 
far-field angle c0: 

(26) 
c0s4g0 d[  

f = ( i - ~ , c o s < ~ ; , ) 5 ~ ; o '  

where, to write the derivative out explicitly 

50 

120" 100" 80" 60" 40" 20" 0' 

FIGURE 3. Directivity pattern of radiation a t  source Mach number M ,  = 0.2. The curves 
show: (1)  Long-wavelength extreme (moving-source model), source 3 equal and mutually 
perpendicular quadrupoles (which in stagnant medium would radiate a t  equal intensity in 
all directions); (2) short-wavelength extreme (geometrical acoustics), source as for curve (1); 
(3) short-wavelength extreme, source a quadrupole with both its axes parallel to the x-axis 
(6 = 0); (4) long-wavelength extreme, sourc0 as for curve (3) .  

The directivity factor of (26) strongly resembles Lighthill's (1952) corre- 
sponding result for long wavelength (as corrected by Williams 1963 to the 5th 
power, instead of the 6th, of 1 - M, cos Q), the difference being the d</d(o factor. 
This is true for an x-x quadrupole; for a combination of quadrupoles such that 
the radiation at  the source is omni-directional (a case relevant t o  isotropic turbu- 
lence, see Proudman 1953) geometrical acoustics yield the completely different 
directivity factor (equation (25 )  without the C O S ~ ~  term) 
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FIGURE 4. As figure 3, for source Mach number M ,  = 0.5. 
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FIGURE 5. ,4s figure 3, for source Mach number M s  = 0.8. 
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Figures (3) to (5) illustrate the directivity distributions of the short- and long- 
wavelength extremes for an x-x quadrupole and omni-directional radiation 
respectively. The sharp cut-off a t  the edge of the cone of silence is of course 
unrealistic, being a defect of the geometrical acoustics approximation, as pointed 
out before. 

It is of interest to note that for the short-wavelength extreme an energy- 
conservation law holds for the far-field sound radiation : integrating equation (21) 
over all angles go, one finds 

which precisely equals the integral of sound emission as evaluated in the moving 
frame (provided that &‘2 contains only even powers of cos 5 and sing, but this is 
certainly true of quadrupole radiation). Thus the extra Mach-number dependence 
(over and above the 8th power law) following from the moving-source model does 
not apply to high-frequency sound, a conclusion already reached by Ribner (1958) 
on the basis of considerations akin to geometrical acoustics. 

4. The structure of jet noise 
We now return to the right-hand side of (4), expressed in (5) .  For our idealized 

mixing layer, expressed in the moving frame of reference, this source term 
becomes 

If one regards p as a variable, this source term expresses ‘ turbulence-sound ’ 
interaction, as well as sound generation. The former effects are irrelevant for the 
present discussion, since as shown by Lighthill (1953), scattering of the sound by 
the same eddies that generate i t  is more or less negligible. To exclude such 
scattering effects one may set p = po = const. Of the remainder, the term 
involvingpij - aip& depends on temperature differences with which we shall not 
be concerned. One of the remaining two terms 

expresses the contribution of the turbulent velocity fluctuations to noise genera- 
tion. In  Lilley’s (1958) terminology this is responsible for ‘self-noise ’, while 
‘shear-noise ’ is produced by the other remaining term 

This source term, although identified by Mollo-Christensen & Narasimha 
(1960), has not been adequately investigated before. Its appearance is that of 
a dipole source term, since the only time-varying part is av!Jax;, which is a simple 
space-derivative rather than a double one. The mean velocity gradient aulax; 
may be regarded as constant over an eddy volume. In  an idealized mixing layer 
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it  is also equal to the velocity gradient measured in a fixed frame. Thus the effect 
of ‘retarded time’ in the solution (14) (in the moving frame) is merely to replace 
a space- by a time-gradient 

Note that in the long-wavelength approximation discussed by Lighthill (1952) 
the same source term arises, the difference in directivity distributions entering 
when one transfers from the moving frame to the fixed frame. Thus the source 
term (32) and its expression in terms of a time-derivative in (33) is generally valid. 

The quadrupole nature of the apparent dipole (32) may now be recognized. 
With aU/ax, sensibly constant over a source volume one may write the equation 
of motion 

This being a divergence, the space-derivatives may again be replaced by time 
derivatives, giving, by (33), 

This is now a quadrupole; it  is proportional to the first time-derivative of the 
Reynolds stress po wLvi, whereas the self-noise source terms yield an amplitude dip 
proportional to the second time-derivative of pov;vi. With i = 2 (35) gives a con- 
tribution proportional to &plat, a source term identified by Lighthill (1954). The 
latter is an x-y quadrupole; (35) shows that the shear-noise source term contains 
also x-x and x--x quadrupoles. 

Thus the physical differences between ‘self-noise’ and ‘shear-noise’ may be 
summed up as follows: 

(1) Shear-noise amplitude is proportional to the first, rather than the second, 
time-derivative of the Reynolds stress, and is therefore likely to radiate at lower 
characteristic frequencies than self-noise. 

(2) Of all three shear-noise quadrupoles a t  least one axis coincides with the 
x-axis so that a predominantly forward emission is inevitable, as against self- 
noise which contains all quadrupoles and may presumably be received in all 
directions; however, shear noise is not necessarily an x-y quadrupole only, as 
would follow from Lighthill (1954). 

The net outcome of the theoretical investigation is that low frequencies are 
likely to be concentrated around the x-axis. 

5.  Discussion 
The main theoretical conclusions arrived at  above may now be compared with 

some experimental evidence. It should be emphasized, however, that the geo- 
metrical acoustics approximation is based on some rather drastic simplifying 
assumptions and qualitative agreement is the most to be hopedfor. Furthermore, 
little is known of the exact source terms, which are fourth-order correlations 
involving Reynolds-stress time-derivatives, and nothing as complicated as this 
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has ever been measured. Thus one is restricted to considering principal character- 
istics of jet noise and major trends in any changes of those characteristics. 

Refraction effects may be expected to appear at  relatively high frequencies, 
perhaps above fD/U, = 2. The wavelength of sound of this Strouhal number is 
h = a,/f = +M, D,  which is about equal to the thickness of the shear layer a few 
diameters downstream of the orifice. Mollo-Christensen et al. (1964) have 
measured the radiation field of such high-frequency sound, separately from the 
complete sound output. For a 1 in. diameter jet at  a Mach number No = 0.8 the 
peak sound intensity occurred (their figure 7) at 48") although in a 'separate 
experiment' their graph (their figure 11) shows this peak at 41". 

Jet  Mach no., M ,  

M ,  = 0.63M0 

0.6 0.8 0.9 

0.378 0.504 0.567 

48" - Angle of peak radiation Mollo-Christensen et al. figure 7 - 
con, Mollo-Christensen et al. figure 11 38" 41" 41" 

Geometrical acoustics 43" 48' 50" 
Moving-source model 36" 293" 28" 

TABLE 1. Position of peak high-frequency radiation comparison of 
theory and experiment 

If the geometrical acoustics approximation is valid for sound in this frequency 
range, the peak should occur at the angle given by equation (8a):  

corn = cos-1(1+ Ms)-l. 

It may be assumed that the sound sources are concentrated in that part of the 
mixing layer where the turbulent intensity is highest (Lilley 1958; Ribner 1964). 
From the data quoted by Townsend (1956) one may deduce that the highest 
intensity occurs where U/U, = 0.63, or so. Wills (1964) has directly measured 
convection velocities U, of eddies within the mixing layer and has found that, in 
the area where the turbulent intensity peaks, U, = 0.63U0, and is more or less 
constant with y (or at  least changing more slowly than U ) .  There is therefore 
ample evidence to set 

for the case shown in figure 7 of Mollo-Christensen et al. Using the moving-source 
model, Lighthill (1952) explains the occurrence of a peak not far from 45" by the 
dominance of a TI, quadrupole, distorted through source motion. The position of 
the peak produced by this mechanism may be taken from his figure 3. The 
comparison between the results of Mollo-Christensen et al., the geometrical 
acoustics model and the moving-source model is shown in table 1. 

This table indicates the basic correctness of the geometrical acoustics approxi- 
mation for describing the behaviour of high-frequency sound. Further confirma- 
tion may be obtained by calculating the ratio of intensities, as expected at 
co = 60" and 120", and comparing it with observation. From Lighthill's figure 3 
this ratio may be estimated to be 20 a t  M, = 0.5 (M, = 0.8). To apply geometrical 
acoustics one must decide what quadrupoles dominate self-noise: there are good 
reasons for expecting this to be omni-directional (Proudman 1953). Then the 

M, = 0.63 x 0.8 = 0.504 

13-2 
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relevant directivity factor is given by equation (28). The ratio of intensities so 
calculated is 5.67. The observed value is 3.55, which is thus less than either 
theoretical value, but the geometrical acoustics approximation gives a t  least the 
correct order of magnitude. 

As to low-frequency sound, fD/Uo < 0-5, the results of Mollo-Christensen et ul. 
show the concentration of sound around the x-axis, as has also been recognized 
by Ribner (1964). Refraction effects in this frequency range seem to be absent or 
are at  least not detectable at 30". However, it  is clear from the data assembled by 
Howes (1960) that a 'cone of silence' does exist between c0 = 0 and 15' or so for 
jet Mach numbers of No = 0.6 and above. The refraction effects are apparently 
intermediate between zero (moving-source model) and the predictions of geo- 
metrical acoustics. It is noteworthy in this context that the Strouhal-number 
criterion for sound being of 'high frequency' changes with Mach number: with 
increasing M, a greater and greater proportion of the sound would be affected 
by refraction. 

One further point is that the validity of geometrical acoustics for the higher- 
frequency components helps to explain why the sound radiation does not increase 
over and above the Us power law with increasing Mach number. As pointed out 
before, an energy conservation law holds as between the moving frame and the 
fixed frame for high-frequency sound. Moreover, with increasing Mach number 
this applies to an increasing proportion of the sound, and supplies a further 
mechanism (apart from the reduction of turbulent intensity with increasing Mach 
number) for counteracting the increased acoustic energy radiation following from 
the moving-source model. 

Another observed fact is that the peak of the spectrum curve shifts to lower 
Strouhal numbers with increasing Mach number (Ribner 1964). This is at once 
easily understood if one accepts that the low-frequency noise is subject to the 
moving-source amplification discussed by Lighthill (1952), while the high- 
frequency noise is not. Clearly, under such conditions the dominance of the shear 
noise would tend to increase with Mach number. 
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